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Spatial bistability and excitability in the chlorite-tetrathionate reaction, performed in gels fed by diffusion
from one boundary, have been extensively studied, both experimentally and numerically, in a flat annular
striplike geometry. We first complement these numerical results. Afterwards, we extend the calculations to the
cylindrical and conical geometries. In the cylinder, we compute the limits of bistability and of excitability
which are important for experiments in chemomechanics but cannot be directly measured. The results of the
simulations in the conical geometry agree with previous experiments on the corresponding setup. We show that
the characteristics of the traveling waves which spontaneously arise in the latter geometry provide a simple and
direct experimental access to these limits.
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I. INTRODUCTION

The chlorite-tetrathionate reaction(hereafter referred as
CT) has become a prototype in the study of several classes of
reaction-diffusion instabilities and dissipative structures in
chemical systems far from equilibrium. When the reaction is
achieved within an inert hydrogel in order to inhibit convec-
tion, it exhibits remarkable dynamical phenomena including
front instabilities[1–3], spatial bistability[4], and long range
activation effects[5]. In the absence of a gel, reaction-
diffusion-convection front instabilities have also been stud-
ied [6,7]. When the inert gel is replaced by a chemorespon-
sive gel, spontaneous changes of size and shape of this gel
were experimentally observed and explained on the basis of
heuristic arguments[8]. In the study of chemical patterns, it
is advisable to permanently sustain stationary nonequilib-
rium conditions. For this purpose, it has become common to
use one sided fed reactors(OSFRs). They are made up of a
piece of gel, with a boundary kept in contact with the con-
tents of a continuous stirred tank reactor(CSTR) which is
maintained in a stationary state by the permanent flow of
chemicals. Within the gel, the feeding of fresh reactants is
achieved by diffusion from this boundary. Such OSFR’s have
been previously used for experiments on traveling waves
[9,10], Turing patterns[11], spot splitting [12], chemical
fronts digitation[13], and spatial bistability[14].

In the experiments of Refs.[4,5,8], the CT reaction was in
fact operated in such reactors. Since the feeding of fresh
reactants results from the diffusive transport from the bound-
aries, the distribution of concentrations within the gel not
only depends on the concentrations in the CSTR, but also on
the size and the geometry of this gel. Most of the systematic
experimental studies of the CT in inert gels were worked out
in a flat quasi-two-dimensional annular piece of gel fed along
the external rim. This is a standard and very convenient ge-
ometry to observe the distribution of concentrations as a
function of the distance to the boundaries[4,5], but, in ex-

periments on chemomechanics, a cylindrical gel was used
[8]. In order to put in evidence the key role that the size of
the gel exerts on dynamical behavior, experiments with inert
gels were also performed in a conical geometry[15]. More-
over, this particular geometry allows to access to properties
at small sizes, which for practical reasons could not be
reached otherwise. This system was found to exhibit a spon-
taneous nonstationary behavior and give rise to traveling
waves close to the tip of the cone. Unfortunately, in these
axial geometries, the distribution of concentrations along the
radial direction, which governs the dynamics, cannot be ac-
cessed directly. In a previous work, it was shown that, in
spite of the system complexity, numerical modeling can re-
produce quantitatively the main dynamical features in the flat
ring case[5]. In this paper, we shall first complement the
numerical work in this standard case. Then, we shall extend
the results to a cylindrical gel in order to quantitatively esti-
mate the changes brought by this geometry. The simulations
are further extended to the conical geometry and we discuss
the emergence of the spontaneous traveling waves as ob-
served in the experiments.

In excess of chlorite, the kinetics of the CT reaction is
well approximated by the following overall balance equa-
tion:

7 ClO2
− + 2 S4O6

2− + 6 H2O → 7 Cl− + 8 SO4
2− + 12 H+

s1d

the reaction rate of which is given by[16]:

vR = −
1

7

dfClO2
−g

dt
= kfClO2

−gfS4O6
2−gfH+g2. s2d

The reaction is strongly autocatalytic in H+. Thus, in slightly
acid conditions, the reaction starts immediately, the level of
H+ increases rapidly, still increasing the reaction rate, so that
the transformation is completed within a short time. On the
contrary, in alcaline conditions, this reaction rate is so low
that no transformation occurs within a typical experimental
duration. Thus, if the input reactants are flowed into a CSTR
in alcaline conditions, no reaction will take place provided*Electronic address: boisson@crpp-bordeaux.cnrs.fr
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the initial contents are not acid. In the rest of the paper, we
shall assume that these conditions are fulfilled in the CSTR.
Let us now assume that a small piece of gel is kept in contact
with the contents of the CSTR. The volume of the CSTR is
supposed to be large enough for these contents not to be
significantly affected by the state of the gel, so that an alca-
line state is maintained along the contact boundary. If the gel
contents are also initially alcaline, no reaction occurs within
the gel and the asymptotic composition will become identical
to the composition in the CSTR. This will be referred as the
“Flow” (or F) state. But, if the initial composition in the gel
is acid, the reaction rate is strongly increased by the autoca-
talysis. Then, the reaction processes counterbalance the dif-
fusion so that the gel remains acid except within a narrow
boundary layer that connects the acid bulk to the alcaline
boundary. This will be referred to as the “mixed” state or FT
state. The “FT” name is an historical notation where the “T”
stands for the “thermodynamic” state that refers to the equi-
librium composition that would be asymptotically achieved
in a closed system. Of course, if the gel “depth,”—i.e., the
size in the directions orthogonal to the feeding boundaries
—is too small (typically smaller than the boundary layer
depth), this FT state cannot be sustained, since the reaction
rate become smaller that the rate of the diffusive exchanges
with the CSTR. Thus, provided that the gel depth is large
enough, two different distributions of concentrations,
namely, F and FT, are stable for the same composition in the
CSTR inside a domain of parameters which depends both on
the “depth” and the feeding composition. This phenomenon
—here explained in the case of the CT reaction but which is
quite generic for “clock reactions” exhibiting bistability in a
CSTR —is referred to as “spatial bistability” and has been
extensively studied in the chlorine-dioxide-iodide reaction
[14], the CT reaction[4,5], and in toy models[17–20]. For a
more comprehensive theory, see Ref.[14].

In addition, the CT reaction exhibits another specific be-
havior. The autocatalytic species H+ diffuses much faster
than the reagents S4O6

2− and ClO2
−, so that there are two

antagonistic effects: on one hand, an acid perturbation tends
to propagate faster, on the other hand, the exchange rates
between the gel and the CSTR are higher for H+ than for the
substrates S4O6

2− and ClO2
−. This interplay, due to the long

range activation, eventually leads to singular dynamics.
When thepH in the CSTR is increased, the FT state becomes
unstable at the limit of the F/FT bistability domain, but still
remains excitable over a large range of this control param-
eter. By excitability, we mean that a small local perturbation
applied to a stationary stable state rapidly increases by a
large amount before the stable solution is recovered. Under
the effect of diffusion, the perturbation gives rises to a pulse
which propagates without deformation at constant velocity in
the stable state[21,22]. Here, a local acid perturbation in-
duces a pulse of FT state that propagates at constant shape
and constant velocity within the stable state F[4,5]. Since, in
this case, these traveling waves originate in the differential
diffusive feeding process, they also depend on the depth of
the gel. Moreover, inside the bistability domain, but just be-
fore the FT→T transition, the FT state exhibits oscillations
of the boundary layer thickness, although the reaction can
never be oscillating in homogeneous conditions.

In order to properly model the kinetics, it was shown[5]
that the fast equilibrium

H+ + OH−
 H2O s3d

had to be taken into account. In regard to thepH of the acid
state in the experiments, the equilibrium

H+ + SO4
2−
 HSO4

− s4d

was also retained. The rate laws of these equilibria are, re-
spectively,

ve = ke
+ − ke

−fH+gfOH−g, s5d

va = ka
+fHSO4

−g − ka
−fH+gfSO4

2−g. s6d

With Eq. (2) this set of equations defines a six-variable
model.

The coupled dynamical equations for the concentrations
in the CSTR and in the gel are, respectively,

] cih

] t
= f ischd +

sci0 − cihd
t

+ Gi s7d

and

] ci

] t
= f iscd + Di¹

2ci , s8d

where ci0, cih, and ci are the concentrations of speciesi,
respectively, in the input flow, in the CSTR, and inside the
gel, Di is the corresponding diffusion coefficient,t is the
residence time of the CSTR, and thef i’s are the reaction
rates given by Eqs.(2)–(4). In the right-hand side of Eq.(7),
the three terms represent the change of the concentrations per
time unit. The first term gives the contribution of the reac-
tion. The second one represents the input and output flows of
the species. It contains all the expandable control parameters
of the system, namely,t and theci0. The third one represents
the feedback of the gel contents on the CSTR and is propor-
tional to the diffusion flow of the species through the surface
of contact. It was previously shown[14] that, since the vol-
ume of the reactor is large in regard to the gel volume, this
term can be neglected, specially in the pararameter domain
on which we shall focus. Thus, in the following, we shall
assumeGi =0, so that Eq.(7) can be solved independently to
provide a Dirichlet boundary condition for Eq.(8).

In all computations, we shall fix the residence time of the
CSTR to t=600 s, the concentrations in the input flow to
fClO2

−g0=1.9310−2 M, fS4O6
2−g0=0.5310−2 M, and the ki-

netic constants tok=53106 M−3 s−1, ke
−=1.431011 M s−1,

ke
+=Ke ke

− with Ke=10−14, ka
−=1011 M s−1, ka

+=Ka ka
− with

pKa=−logsKad=1.94 like in Refs.[4,5]. The choice of diffu-
sion coefficients raises a problem: whereas the autodiffusion
coefficients of H+ and OH− are much larger than those of the
other ionic species, the condition of local electroneutrality
tends to smooth these differences. Therefore, all the diffusion
coefficients will be fixed in an heuristic way to a standard
value D=10−5 cm2 s−1 except those of the fast species that
will be both fixed toDH+=DOH−=3.4310−5 cm2 s−1. In spite
of its apparent crudeness, this approximation was previously
found to best fit the experimental data of Refs.[4,5].
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We have investigated three different geometries, namely,
the flat strip which models the experiments of Refs.[4,5], the
cylinder used in experiments on chemomechanics[8], and
the cone which models the experiments of Ref.[15]. Like in
the latter reference, we shall express the control parameter in
terms of the concentrationfOH−g0 in the total input flow
rather than the equivalent operational parametera, used in
the previous publications, since the physical meaning ofa is
less evident in a theoretical context.

II. FLAT STRIP

In the experiments, the reactor was made of a flat annular
piece of gel. The outer rim —of radiusRext—is kept in con-
tact with the CSTR and the inner rim —of radiusRin—is
pressed against an impermeable wall. The film thickness is
small enough for the system to be considered as two-
dimensional. Given that the “depth”l =Rext−Rin, is small in
regard to these radiisl !Rin,Rextd, the effects of the curva-
ture on the dynamics can be neglected. For the system to be
effectively considered as two-dimensional,l must be signifi-
cantly larger than the thickness of the gel film. Since, for
technical reasons, such as mechanical cohesion, this thick-
ness cannot be decreased below a minimum value(typically
0.5 mm), this constitutes an experimental limit forl in this
geometry, but this limit can be numerically surpassed. In the
numerical simulations the system is treated as a long rectan-
gular strip of widthl. The nonequilibrium phase diagram is
built in the parameter plane(fOH−g0, l): This diagram exhib-
its the changes in the bistability, oscillations, and excitability
domains with the widthl of the strip.

The solutions of Eqs.(7) and (8) are obtained by finite
differences algorithms for stiff systems. To determine with
precision the limits of the spatial bistability and oscillatory
domains, only one-dimensional calculations in the direction
orthogonal to the faces are necessary. This was already
achieved in Ref.[5]. In addition, we report here the limits of
the excitability domain, which needed full two-dimensional
computations with a backward implicit algorithm for stiff
systems. In Fig. 1, we give an example of an acid pulse
propagating within the stable alcaline state. The previously
computed domains and the new computed excitability limits
are gathered in Fig. 2. The horizontal double arrows indicate
the corresponding experimental domains that had been inves-
tigated. Note that the experimental data atl =0.5 mm are
highly uncertain, in particular the limit of the excitability
domain since the number of experimental points is reduced
due to the technical limitations mentioned above. As ex-
pected, at very smalll, the alcaline F state always invades
the gel so that both bistability and excitability disappear.

In spite of the apparent crudeness of the model and the
strong approximations in the diffusion coefficients, the re-

sults are in quasiquantitative agreement and make us confi-
dent that these results are valid in regions where the com-
puted limits or the state determination are yet experimentally
inaccessible.

III. CYLINDRICAL GEOMETRY

In experiments, the distribution of concentrations is char-
acterized by a color indicator. So, when the piece of gel is
cylindrical, it is impossible to make a direct observation of
this distribution in the “depth” of the gel, i.e., along a radius,
since the light intensity is integrated across the gel. Only the
states in the axial direction can be differentiated. Neverthe-
less, the radial distribution can be computed on the same
lines as precedently. Assuming that there is no instability
which breaks the axial symmetry, Eq.(8) is solved in cylin-
drical coordinates, using

¹2c =
] c

] r
+

1

r

]2c

] r2 +
]2c

] z2 , s9d

where r is the radial coordinate andz the coordinate along
the axis. We have only searched the position of the FT→F
transition and the limit of the excitability domain. When the
gradient of concentration in the radial direction is constant,
the diffusion flow exchanged through a given shell increases
with the distance to the axis. Thus, although the radiusR of
the cylinder plays a role analog tol in the flat strip, external
shells are favored in regard to the inner core so that the state
F should be more favored than in the flat strip. Computations
of the FT→F transition position are performed in one di-
mension since it is associated to the dynamics in the sole
radial directionsz=Constd. For the excitability limits, full
two dimensional calculations are again necessary, since the

FIG. 1. Pulse of H+ propagating to the right within the stable
alcaline F state(grey scale: minimum black, maximum white). The
CSTR is located at the bottom, the impermeable wall at the top.
Strip width: l =0.5 mm,fOH−g0=1.093310−2 M.

FIG. 2. Non equilibrium phase diagram in the strip geometry.
Full curves: bistability limits. Dashed lines: excitability limits(long
dashes), oscillations limits(short dashes). Double arrows: experi-
mental extent of bistability domain(full arrow) and excitability do-
mains(dashed arrow) from [4,5]. Bullets: experimental oscillations.
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acid pulse propagates along the cylinder axis direction.
In Fig. 3, we have reported the computed limits of the

different domains for the cylindrical geometry(thick curves)
in the planesfOH−g0,Rd. In order to make the comparison
easier, the same previous limits obtained for the flat strip are
also shown in the figure(thin curves) taking l in place ofR.
Both diagrams are similar. As expected, the limits are
slightly shifted to the left, i.e., for the same values of the size
R andl, the FT state cannot be sustained atfOH−g0 values as
large as in the flat strip case. Accordingly, at a given value of
fOH−g0, the minimal value ofR that allows to sustain this FT
state is larger than the corresponding minimal value ofl. The
features of the oscillations are similar to those of the flat strip
system. Like in this flat strip, we have also observed period
doubling sequences(not reported here) close to the limit of
the oscillatory domain like in Ref.[5]. Nevertheless, the os-
cillatory region is significantly narrower than in the strip
geometry, which can be understood in the following way.
Oscillations come out when the position of the front which
corresponds to the transition between the acid and the alca-
line part of the gel in the FT state becomes unstable. In the
strip geometry, this occurs when this front comes close to the
impermeable wall, more precisely, when the alcaline bound-
ary layer becomes of the same order as the depthl. In the
cylindrical geometry, the role of the wall is reduced to the
sole axis, so that the extent of the domain where the front
“feels” the wall is much smaller.

Although no direct experimental data could be obtained in
the cylinder case, our results allow to evaluate the correc-
tions to bring to the data obtained in the strip case.

IV. CONICAL GEOMETRY

Although it is very difficult to prepare series of well cali-
brated cylindrical gels at small radii, it is less demanding to
prepare a unique sample of a conical gel. This sample covers
a large continuous range of radii at the same time, but the
more complex dynamics that this geometry generates[15]
has to be linked to the previous results.

Let us now consider a conical piece of gel, wherer is the
distance to the top andu0 is the top angle taken from the
axis. If u0!1, the cone can be considered locally as a cyl-
inder, the radius of which is slowly changing along the axis
according tor .ru0. Thus, in the absence of diffusion along
the axis, the local dynamical properties would approxima-
tively correspond to those along a vertical segment in the
cylinder diagram in Fig. 3. The purpose of our calculations is
to show how this diffusion can control global dynamics. We
shall show that, according to this dynamical behavior, ex-
perimentalists can take advantage of this particular geometry,
either to access simultaneously to some of the limits in Fig. 3
in a one shot experiment, either to induce spontaneous relax-
ation oscillations of large amplitude.

We again assume that the axial symmetry is not broken by
the dynamics. Therefore, in Eq.(8), the Laplacian in spheri-
cal coordinates becomes

¹2c =
1

r2

]

] r
Sr2] c

] r
D +

1

r2 sin u

]

] u
Ssin u

] c

] u
D . s10d

In experiments, the cone was immersed in the CSTR, except
the base which was glued to an impermeable wall. The tip is
never well defined and is more or less rounded. Nevertheless,
this part of the cone, where the distances to the feeding
boundaries are very small, always remains in the stationary
state F, whatever the exact shape of the tip is. In our com-
putations, we shall actually consider a piece of cone defined
by rminørørmax. In order to closely simulate the experi-
mental conditions, the external boundaries(i.e., u=u0 or r
=rmin) are kept at the CSTR values, and no flux boundary
conditions are applied atr=rmax. We shall fix the angle at
the top of the cone tou0=0.125, of the same order of mag-
nitude as in experiments of Ref.[15]. We only report in
details the results for a typical case, namely, forfOH−g0

=4.133310−3 M. Our truncated cone is delimited byrmin
=0.4 mm andrmax=6.4 mm. According tor =ru0, the corre-
sponding range of cylinder radii isf0.05 mm,0.8 mmg and is
represented in Fig. 3 as a thin double vertical arrow. Along
this curve, the limits of excitability, bistability, and oscilla-
tions are, respectively, given byrE=0.14 mm,rB=0.54 mm,
rO=0.61 mm and the corresponding positions in the cone by
rE=1.12 mm,rB=4.32 mm, andrO=4.88 mm. In Fig. 5, to
allow for easy comparison, these values are reported on ther
axis when it was found appropriate.

The system is initially in the F alcaline state everywhere.
An acid perturbation is applied in the bistable or excitable
domain part of the cone. After a short transient, a regime of
periodic oscillations is established in the gel. A series of
snapshots of the distribution offH+g within the cone over
one period is given in Fig. 4. In Fig. 5(a), we show thefH+g
profiles along the axis of the cone for the same snapshots. A

FIG. 3. Nonequilibrium phase diagram in the cylindrical geom-
etry. Full curves: bistability limits; Short dashes: oscillations limits;
long dashes: excitability limits. Thin curves correspond to the limits
in the rectangular strip geometry(see Fig. 2). The vertical double
arrow will be defined in the next section.
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front of acidity propagates back and forth with a periodT
=246 s. The direction of propagation changes att.0 s, t
.32 s, andt.246 s. The propagation to the left(smallr) is
much faster than the propagation to the right. A sequence of
axial fH+g profiles during this sole rapid phase is shown in
Fig. 5(b) with a shorter sampling time than in Fig. 5(a).

Let us now describe and interpret the motions of the F/FT
interface in the axial direction starting fromt=0. Within the
bistability region, the F state and the FT are both stable.
Nevertheless, as a consequence of long range activation, if
these two states are in contact, the FT state always propa-
gates into the F state and invades the system[5]. Since the
induction time of the reaction is quasi-infinite, an acid per-
turbation is necessary to initiate the FT state, but, afterwards,
at larger, the gel always remains in the FT state. Slightly
beyond the bistability limit, the FT state is no longer stable
but an acid perturbation propagates under the form of a lo-
calized pulse. This defines the excitability domain. In the
cone, the FT state at larger creates the acid perturbation
which initiates the pulse and propagates to the left[Fig. 5(b)]
up to the limit of the excitability domain, i.e., atr=rE. One
could expect that the pulse would propagate with damping
beyond this limit, but the amplitude and velocity already
strongly decreases before reaching it, so that the point at
which the propagation stops is actually very close tor=rE.
Behind the pulse, a long recovery time is necessary for the
core to be sufficiently replenished with fresh reactants for the
system to be excitable again. Actually, fast diffusion of H+

and OH− restore the alcaline character of the core before this
process is achieved, so that the restoring time is controled by
the slow diffusion coefficient. The F/FT interface recedes,
leaving the system in the F state but, since the F state cannot
propagate into a stable FT state, it cannot deeply penetrate
into the bistable domain so that the backwave stops at ar
value close to the bistability limit. Afterwards, the system
becomes again excitable and a new excitation wave starts.
The process repeats periodically with a periodT of the order
of magnitude of the replenish time of the core in the vicinity
of this starting point. Forr ,0.5 mm one hasT, r2/D
=250 s. The real value isT=246 s. In fact, there is an appar-
ent ambiguity on the point where the backwave stops, defin-
ing the starting point. Strictly speaking, this limit should be
r=rB. Yet, for rB,r,rO—i.e., rB, r , rO—one knows
that, in the cylinder, the FT state is affected by oscillations of
a different nature, which already indicates an instability of
the FT state. In the strip or the cylinder, the width of the
boundary layer which separates the acid core from the alca-
line boundary oscillates in time. The closer the maximum
width of this layer is from the depthl (strip) or the cylinder
radius, i.e., the closer to the FT→T transition, the larger is
the amplitude and the period of these oscillations. One ex-
pects that, in the cone, this transverse instability can create a
particular sensitivity of the FT state to the backwave. It oc-
curs that, in our computation, this backwave goes up to a
value close tor=rO. Besides, a finer analysis shows that

FIG. 4. Evolution offH+g in an axial section of the cone over
one period of oscillation. ParametersfOH−g0=4.133310−3 M,
rmin=0.4 mm,rmax=0.64 mm,u0=0.125 rad. For better readablity
a grey scale proportional to the logarithm of concentration is used:
From fH+g=2.310−12 M (black) to fH+g=1.44310−2 M (white).
Extra white lines indicate the borders of the cone. Times are
counted from the begining of a period. From top to bottom: 0 s;
20 s; 32 s; 50 s; 246 s.

FIG. 5. Evolution of thefH+g profile along the axis of the cone
during a period. Same parameters as in Fig. 4.(a) Full period: The
fH+g profiles correspond to the images of Fig. 4 and are indexed
with time. The arrows give the direction of motion. LabelsrE, rB,
andrO correspond, respectively, to the excitability limit, the bista-
bility limit, and the oscillations limit in the cylinder diagram of Fig.
3 for the same value offOH−g0. (b) Successive snapshots of the
fH+g profiles taken every 2 s fromt=12 s to t=36 s. The front
moves to the left except the last one(t=36 s, dashed curve).
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these oscillations of the boundary layer slightly modulate the
signal of the backwave in the vicinity of the CSTR bound-
aries. Nevertheless, this modulation remains small, since in
the domain where these layer oscillations could become large
in the cylinder, their period increases to values much larger
than T, so that the longitudinal oscillations caused by the
changes ofr dominate and they determine the amplitude and
frequency.

V. CONCLUSIONS

This work has been initiated in rapport with the develop-
ment of a new field of research, namely chemomechanics,
which associates chemical dissipative structures with
chemosensitivity of soft matter(see Chaps. 3–8 in Ref.[23]).
In particular, the search for rhythms and forms that could
spontaneously emerge from the sole coupling between a re-
action that exhibits bistability properties but no autonomous
oscillations —like the CT reaction —and a chemoresponsive
gel. Both for technical and fundamental reasons, the experi-
ments make use of cylinders of gel of small radius, for which
a number of crucial parameters cannot be measured directly.

We have rebuild a diagram of spatial bistability and ex-
citability for the CT reaction in cylindrical geometry. One
expects that the results can be extrapolated to the experimen-
tal data with the same degree of confidence as we have for
the flat strip. It is impossible, in the cylindrical geometry, to
evaluate experimentally the distribution of concentration in
the radial direction, but our diagram allows to evaluate the
corrections to the flat strip case, in particular the shift of the
bistability and excitability limits to less alcaline CSTR states.
But the most important point is that the computed diagram
gives therB andrE limits in the domain where they are small.
The knowledge of these limits is extremely important in the
search for chemomechanical motions that rely on spatial bi-
stability since large changes of compositions occur at these
precise sizes, inducing in turn a feedback on the geometry
[19]. These data seem presently inaccessible in experiments
on true cylinders.

It has been shown[15] that it was possible to study ex-
perimentally the dynamics in a conical gel. Here, we have
made quantitative simulations on these dynamics and clari-
fied their relations to the geometrical characteristics of the
system. Let us remind an important point: The excitability
and the oscillations along the axis of the cone do not find
their origin in the sole reaction-diffusion process like in the
classical oscillatory or excitable reactions, but are closely
linked to the size of the system that controls the feeding in
fresh reactants, an essential point for chemomechanics. The
dynamics in the cone is due to the gradient of the sizer along
the axis. In our simulations, we have shown that, if neces-
sary, a one shot experiment in the cone allows to determine
quantitatively the essential parameters of the CT spatial bi-
stability in the cylinder for a given state of the CSTR(i.e., a
given value offOH−g0). Actually, we show that the diffusion
along the cone axis does not modify significantly the limits
that could be predicted from naive arguments that neglects
this diffusion. The turning point of the direct wave allows for
an accurate determination ofrE, thusrE. The turning point of
the back wave allows for the determination ofrO, thus rO.
The problem we raised about the ambiguity that could re-
main betweenrB andrO is not of practical importance, since
in small size systems, these values are always close to each
other.

Thus, the results reported in this paper provide two differ-
ent ways to access to the spatial bistability properties in cy-
lindrical geometry at low radii. Taking the validity of the
model in the flat strip case for granted, one can use the nu-
merical simulations in cylindrical geometry. For a comple-
mentary or alternative experimental approach, one can per-
form a few experiments in a conical gel.

ACKNOWLEDGMENTS

We thank P. De Kepper, F. Gauffre, V. Labrot, and E.
Dulos for numerous discussions and communication of ex-
perimental results. This work was supported by CNRS, Ré-
gion Aquitaine, and the computation pole M3PEC of Bor-
deaux 1 University.

[1] Á. Tóth, I. Lagzi, and D. Horváth, J. Phys. Chem.100, 14837
(1996).

[2] D. Horváth and Á Tóth, J. Chem. Phys.108, 1447(1998).
[3] M. Fuentes, M. N. Kuperman, and P. De Kepper, J. Phys.

Chem. 105, 6769(2001).
[4] J. Boissonade, E. Dulos, F. Gauffre, M. Kuperman, and P. De

Kepper, Faraday Discuss.120, 353 (2001).
[5] M. Fuentes, M. N. Kuperman, J. Boissonade, E. Dulos, F.

Gauffre, and P. De Kepper, Phys. Rev. E66, 056205(2002).
[6] T. Bánsági Jr., D. Horváth, Á. Tóth, J. Yang, S. Kalliadasis,

and A. De Wit, Phys. Rev. E68, 055301(2003).
[7] T. Bánsági Jr., D. Horváth, and Á. Tóth, Phys. Rev. E68,

026303(2003); T. Bánsági Jr., D. Horváth, and Á. Tóth, Chem.
Phys. Lett.384, 153 (2004).

[8] F. Gauffre, V. Labrot, J. Boissonade, and P. De Kepper, in Ref.
[23].

[9] Z. Noszticzius, W. Horsthemke, W. D. McCormick, H. L.
Swinney, and W. Y. Tam, Nature(London) 329, 619 (1987).

[10] W. Y. Tam, Z. Noszticzius, W. Horsthemke, W. D. McCor-
mick, and H. L. Swinney, J. Chem. Phys.88, 3395(1988).

[11] B. Rudovics, E. Barillot, P. W. Davies, E. Dulos, J. Boisson-
ade, and P. De Kepper, J. Phys. Chem. A103, 1790(1999).

[12] K. J. Lee, D. McCormick, Q. Ouyang, and H. Swinney, Sci-
ence 261, 192 (1993).

[13] P. W. Davies, P. Blanchedeau, E. Dulos, and P. De Kepper, J.
Phys. Chem. A102, 8236(1998).

[14] P. Blanchedeau, J. Boissonade, and P. De Kepper, Physica D
147, 283 (2000).

[15] F. Gauffre, V. Labrot, J. Boissonade, P. De Kepper, and E.

D. E. STRIER AND J. BOISSONADE PHYSICAL REVIEW E70, 016210(2004)

016210-6



Dulos, J. Phys. Chem. A107, 4452(2003).
[16] I. Nagypal and I. R. Epstein, J. Phys. Chem.90, 6285(1986).
[17] P. Blanchedeau and J. Boissonade, Phys. Rev. Lett.81, 5007

(1998).
[18] M. Bachir, P. Borckmans, and G. Dewel, Phys. Rev. E59,

R6223(1999).
[19] J. Boissonade, Phys. Rev. Lett.90, 188302(2003).
[20] P. Borckmans, K. Benyaich, and G. Dewel, Int. J. Quantum

Chem. 98, 239 (2004).
[21] V. S. Zykov,Simulation of Wave Processes in Excitable Media

(Manchester University Press, Manchester, 1987).
[22] A. Mikhailov, Foundations of Synergetics I. Distributed Active

Systems(Springer, Berlin, 1994).
[23] Nonlinear Dynamics in Polymeric Systems, ACS Symposium

Series 869, edited by J. Pojman and Qi. Tran-Cong-Miyata
(American Chemical Society, Washington, D.C., 2003).

SPATIAL BISTABILITY AND EXCITABILITY IN THE … PHYSICAL REVIEW E 70, 016210(2004)

016210-7


